Properties

Label 4675.4266
Modulus $4675$
Conductor $4675$
Order $10$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4675, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,6,5]))
 
pari: [g,chi] = znchar(Mod(4266,4675))
 

Basic properties

Modulus: \(4675\)
Conductor: \(4675\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4675.bt

\(\chi_{4675}(356,\cdot)\) \(\chi_{4675}(696,\cdot)\) \(\chi_{4675}(1886,\cdot)\) \(\chi_{4675}(4266,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: Number field defined by a degree 10 polynomial

Values on generators

\((4302,3401,3301)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{3}{5}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(12\)\(13\)\(14\)
\( \chi_{ 4675 }(4266, a) \) \(1\)\(1\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(-1\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4675 }(4266,a) \;\) at \(\;a = \) e.g. 2