Properties

Label 4675.4266
Modulus 46754675
Conductor 46754675
Order 1010
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4675, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([2,6,5]))
 
Copy content pari:[g,chi] = znchar(Mod(4266,4675))
 

Basic properties

Modulus: 46754675
Conductor: 46754675
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1010
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4675.bt

χ4675(356,)\chi_{4675}(356,\cdot) χ4675(696,)\chi_{4675}(696,\cdot) χ4675(1886,)\chi_{4675}(1886,\cdot) χ4675(4266,)\chi_{4675}(4266,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: Number field defined by a degree 10 polynomial

Values on generators

(4302,3401,3301)(4302,3401,3301)(e(15),e(35),1)(e\left(\frac{1}{5}\right),e\left(\frac{3}{5}\right),-1)

First values

aa 1-11122334466778899121213131414
χ4675(4266,a) \chi_{ 4675 }(4266, a) 1111e(45)e\left(\frac{4}{5}\right)e(710)e\left(\frac{7}{10}\right)e(35)e\left(\frac{3}{5}\right)1-1e(710)e\left(\frac{7}{10}\right)e(25)e\left(\frac{2}{5}\right)e(25)e\left(\frac{2}{5}\right)e(310)e\left(\frac{3}{10}\right)e(25)e\left(\frac{2}{5}\right)1-1
Copy content sage:chi.jacobi_sum(n)
 
χ4675(4266,a)   \chi_{ 4675 }(4266,a) \; at   a=\;a = e.g. 2