from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4675, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,8,5]))
chi.galois_orbit()
[g,chi] = znchar(Mod(549,4675))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(4675\) | |
Conductor: | \(935\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(16\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 935.bp | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{16})\) |
Fixed field: | Number field defined by a degree 16 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{4675}(549,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(-i\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(i\) | \(e\left(\frac{13}{16}\right)\) |
\(\chi_{4675}(1099,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(i\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(-i\) | \(e\left(\frac{15}{16}\right)\) |
\(\chi_{4675}(1374,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(-i\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(i\) | \(e\left(\frac{1}{16}\right)\) |
\(\chi_{4675}(1924,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(-i\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(i\) | \(e\left(\frac{9}{16}\right)\) |
\(\chi_{4675}(2199,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(i\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(-i\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{4675}(2749,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-i\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(i\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{4675}(3849,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(i\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(-i\) | \(e\left(\frac{3}{16}\right)\) |
\(\chi_{4675}(4124,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(i\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(-i\) | \(e\left(\frac{11}{16}\right)\) |