from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4675, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([20,16,15]))
chi.galois_orbit()
[g,chi] = znchar(Mod(49,4675))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(4675\) | |
Conductor: | \(935\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(40\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 935.cg | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{40})\) |
Fixed field: | Number field defined by a degree 40 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{4675}(49,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{23}{40}\right)\) |
\(\chi_{4675}(399,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{21}{40}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{23}{40}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{40}\right)\) |
\(\chi_{4675}(774,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{29}{40}\right)\) |
\(\chi_{4675}(1324,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{19}{40}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{39}{40}\right)\) |
\(\chi_{4675}(1549,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{21}{40}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{27}{40}\right)\) |
\(\chi_{4675}(1974,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{23}{40}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{40}\right)\) |
\(\chi_{4675}(2049,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{19}{40}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{21}{40}\right)\) |
\(\chi_{4675}(2099,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{23}{40}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{40}\right)\) |
\(\chi_{4675}(2524,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{33}{40}\right)\) |
\(\chi_{4675}(2599,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{33}{40}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{31}{40}\right)\) |
\(\chi_{4675}(3249,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{21}{40}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{19}{40}\right)\) |
\(\chi_{4675}(3749,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{37}{40}\right)\) |
\(\chi_{4675}(3799,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{9}{40}\right)\) |
\(\chi_{4675}(4174,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{33}{40}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{19}{40}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{13}{40}\right)\) |
\(\chi_{4675}(4299,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{33}{40}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{40}\right)\) |
\(\chi_{4675}(4524,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{11}{40}\right)\) |