Properties

Label 475.119
Modulus $475$
Conductor $475$
Order $90$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([81,80]))
 
pari: [g,chi] = znchar(Mod(119,475))
 

Basic properties

Modulus: \(475\)
Conductor: \(475\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(90\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 475.bg

\(\chi_{475}(4,\cdot)\) \(\chi_{475}(9,\cdot)\) \(\chi_{475}(44,\cdot)\) \(\chi_{475}(54,\cdot)\) \(\chi_{475}(104,\cdot)\) \(\chi_{475}(119,\cdot)\) \(\chi_{475}(139,\cdot)\) \(\chi_{475}(169,\cdot)\) \(\chi_{475}(194,\cdot)\) \(\chi_{475}(214,\cdot)\) \(\chi_{475}(234,\cdot)\) \(\chi_{475}(244,\cdot)\) \(\chi_{475}(264,\cdot)\) \(\chi_{475}(289,\cdot)\) \(\chi_{475}(294,\cdot)\) \(\chi_{475}(309,\cdot)\) \(\chi_{475}(329,\cdot)\) \(\chi_{475}(339,\cdot)\) \(\chi_{475}(359,\cdot)\) \(\chi_{475}(384,\cdot)\) \(\chi_{475}(389,\cdot)\) \(\chi_{475}(404,\cdot)\) \(\chi_{475}(434,\cdot)\) \(\chi_{475}(454,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Values on generators

\((77,401)\) → \((e\left(\frac{9}{10}\right),e\left(\frac{8}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 475 }(119, a) \) \(1\)\(1\)\(e\left(\frac{71}{90}\right)\)\(e\left(\frac{77}{90}\right)\)\(e\left(\frac{26}{45}\right)\)\(e\left(\frac{29}{45}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{32}{45}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{49}{90}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 475 }(119,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 475 }(119,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 475 }(119,·),\chi_{ 475 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 475 }(119,·)) \;\) at \(\; a,b = \) e.g. 1,2