from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([51,10]))
pari: [g,chi] = znchar(Mod(122,475))
Basic properties
Modulus: | \(475\) | |
Conductor: | \(475\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 475.be
\(\chi_{475}(8,\cdot)\) \(\chi_{475}(12,\cdot)\) \(\chi_{475}(27,\cdot)\) \(\chi_{475}(88,\cdot)\) \(\chi_{475}(103,\cdot)\) \(\chi_{475}(122,\cdot)\) \(\chi_{475}(183,\cdot)\) \(\chi_{475}(198,\cdot)\) \(\chi_{475}(202,\cdot)\) \(\chi_{475}(217,\cdot)\) \(\chi_{475}(278,\cdot)\) \(\chi_{475}(297,\cdot)\) \(\chi_{475}(312,\cdot)\) \(\chi_{475}(373,\cdot)\) \(\chi_{475}(388,\cdot)\) \(\chi_{475}(392,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((77,401)\) → \((e\left(\frac{17}{20}\right),e\left(\frac{1}{6}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 475 }(122, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(i\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{59}{60}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)