sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([54,35]))
pari:[g,chi] = znchar(Mod(71,475))
Modulus: | 475 | |
Conductor: | 475 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 90 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ475(21,⋅)
χ475(41,⋅)
χ475(71,⋅)
χ475(86,⋅)
χ475(91,⋅)
χ475(116,⋅)
χ475(136,⋅)
χ475(146,⋅)
χ475(166,⋅)
χ475(181,⋅)
χ475(186,⋅)
χ475(211,⋅)
χ475(231,⋅)
χ475(241,⋅)
χ475(261,⋅)
χ475(281,⋅)
χ475(306,⋅)
χ475(336,⋅)
χ475(356,⋅)
χ475(371,⋅)
χ475(421,⋅)
χ475(431,⋅)
χ475(466,⋅)
χ475(471,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(77,401) → (e(53),e(187))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ475(71,a) |
−1 | 1 | e(9089) | e(9023) | e(4544) | e(4511) | e(31) | e(3029) | e(4523) | e(154) | e(307) | e(9031) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)