Properties

Label 475.71
Modulus 475475
Conductor 475475
Order 9090
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(90)) M = H._module chi = DirichletCharacter(H, M([54,35]))
 
Copy content pari:[g,chi] = znchar(Mod(71,475))
 

Basic properties

Modulus: 475475
Conductor: 475475
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 9090
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 475.bf

χ475(21,)\chi_{475}(21,\cdot) χ475(41,)\chi_{475}(41,\cdot) χ475(71,)\chi_{475}(71,\cdot) χ475(86,)\chi_{475}(86,\cdot) χ475(91,)\chi_{475}(91,\cdot) χ475(116,)\chi_{475}(116,\cdot) χ475(136,)\chi_{475}(136,\cdot) χ475(146,)\chi_{475}(146,\cdot) χ475(166,)\chi_{475}(166,\cdot) χ475(181,)\chi_{475}(181,\cdot) χ475(186,)\chi_{475}(186,\cdot) χ475(211,)\chi_{475}(211,\cdot) χ475(231,)\chi_{475}(231,\cdot) χ475(241,)\chi_{475}(241,\cdot) χ475(261,)\chi_{475}(261,\cdot) χ475(281,)\chi_{475}(281,\cdot) χ475(306,)\chi_{475}(306,\cdot) χ475(336,)\chi_{475}(336,\cdot) χ475(356,)\chi_{475}(356,\cdot) χ475(371,)\chi_{475}(371,\cdot) χ475(421,)\chi_{475}(421,\cdot) χ475(431,)\chi_{475}(431,\cdot) χ475(466,)\chi_{475}(466,\cdot) χ475(471,)\chi_{475}(471,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ45)\Q(\zeta_{45})
Fixed field: Number field defined by a degree 90 polynomial

Values on generators

(77,401)(77,401)(e(35),e(718))(e\left(\frac{3}{5}\right),e\left(\frac{7}{18}\right))

First values

aa 1-11122334466778899111112121313
χ475(71,a) \chi_{ 475 }(71, a) 1-111e(8990)e\left(\frac{89}{90}\right)e(2390)e\left(\frac{23}{90}\right)e(4445)e\left(\frac{44}{45}\right)e(1145)e\left(\frac{11}{45}\right)e(13)e\left(\frac{1}{3}\right)e(2930)e\left(\frac{29}{30}\right)e(2345)e\left(\frac{23}{45}\right)e(415)e\left(\frac{4}{15}\right)e(730)e\left(\frac{7}{30}\right)e(3190)e\left(\frac{31}{90}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ475(71,a)   \chi_{ 475 }(71,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ475(71,))   \tau_{ a }( \chi_{ 475 }(71,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ475(71,),χ475(n,))   J(\chi_{ 475 }(71,·),\chi_{ 475 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ475(71,))  K(a,b,\chi_{ 475 }(71,·)) \; at   a,b=\; a,b = e.g. 1,2