from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4760, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([0,4,6,4,7]))
pari: [g,chi] = znchar(Mod(1413,4760))
Basic properties
Modulus: | \(4760\) | |
Conductor: | \(4760\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(8\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4760.eu
\(\chi_{4760}(1413,\cdot)\) \(\chi_{4760}(3653,\cdot)\) \(\chi_{4760}(4157,\cdot)\) \(\chi_{4760}(4717,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{8})\) |
Fixed field: | 8.8.63054281847872000000.2 |
Values on generators
\((1191,2381,2857,1361,3641)\) → \((1,-1,-i,-1,e\left(\frac{7}{8}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) | \(33\) |
\( \chi_{ 4760 }(1413, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) |
sage: chi.jacobi_sum(n)