Properties

Label 4760.2787
Modulus $4760$
Conductor $680$
Order $4$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4760, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,2,1,0,2]))
 
pari: [g,chi] = znchar(Mod(2787,4760))
 

Basic properties

Modulus: \(4760\)
Conductor: \(680\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{680}(67,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4760.bp

\(\chi_{4760}(883,\cdot)\) \(\chi_{4760}(2787,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.2312000.1

Values on generators

\((1191,2381,2857,1361,3641)\) → \((-1,-1,i,1,-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(19\)\(23\)\(27\)\(29\)\(31\)\(33\)
\( \chi_{ 4760 }(2787, a) \) \(1\)\(1\)\(i\)\(-1\)\(-1\)\(i\)\(-1\)\(-i\)\(-i\)\(-1\)\(1\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4760 }(2787,a) \;\) at \(\;a = \) e.g. 2