Properties

Label 4760.29
Modulus 47604760
Conductor 680680
Order 1616
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4760, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,8,8,0,13]))
 
Copy content pari:[g,chi] = znchar(Mod(29,4760))
 

Basic properties

Modulus: 47604760
Conductor: 680680
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1616
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ680(29,)\chi_{680}(29,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4760.ia

χ4760(29,)\chi_{4760}(29,\cdot) χ4760(309,)\chi_{4760}(309,\cdot) χ4760(589,)\chi_{4760}(589,\cdot) χ4760(1149,)\chi_{4760}(1149,\cdot) χ4760(2829,)\chi_{4760}(2829,\cdot) χ4760(3389,)\chi_{4760}(3389,\cdot) χ4760(3669,)\chi_{4760}(3669,\cdot) χ4760(3949,)\chi_{4760}(3949,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: 16.0.18759175710374728781004800000000.1

Values on generators

(1191,2381,2857,1361,3641)(1191,2381,2857,1361,3641)(1,1,1,1,e(1316))(1,-1,-1,1,e\left(\frac{13}{16}\right))

First values

aa 1-111339911111313191923232727292931313333
χ4760(29,a) \chi_{ 4760 }(29, a) 1-111e(1316)e\left(\frac{13}{16}\right)e(58)e\left(\frac{5}{8}\right)e(316)e\left(\frac{3}{16}\right)iie(78)e\left(\frac{7}{8}\right)e(1116)e\left(\frac{11}{16}\right)e(716)e\left(\frac{7}{16}\right)e(116)e\left(\frac{1}{16}\right)e(516)e\left(\frac{5}{16}\right)11
Copy content sage:chi.jacobi_sum(n)
 
χ4760(29,a)   \chi_{ 4760 }(29,a) \; at   a=\;a = e.g. 2