Properties

Label 4760.47
Modulus $4760$
Conductor $2380$
Order $12$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4760, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,0,3,10,3]))
 
pari: [g,chi] = znchar(Mod(47,4760))
 

Basic properties

Modulus: \(4760\)
Conductor: \(2380\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2380}(47,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4760.fp

\(\chi_{4760}(47,\cdot)\) \(\chi_{4760}(1823,\cdot)\) \(\chi_{4760}(3183,\cdot)\) \(\chi_{4760}(3447,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: Number field defined by a degree 12 polynomial

Values on generators

\((1191,2381,2857,1361,3641)\) → \((-1,1,i,e\left(\frac{5}{6}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(19\)\(23\)\(27\)\(29\)\(31\)\(33\)
\( \chi_{ 4760 }(47, a) \) \(-1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(i\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(-i\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{11}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4760 }(47,a) \;\) at \(\;a = \) e.g. 2