Properties

Label 4760.hz
Modulus $4760$
Conductor $68$
Order $16$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4760, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,0,0,0,1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(71,4760))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4760\)
Conductor: \(68\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 68.i
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: \(\Q(\zeta_{68})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(9\) \(11\) \(13\) \(19\) \(23\) \(27\) \(29\) \(31\) \(33\)
\(\chi_{4760}(71,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(-1\)
\(\chi_{4760}(351,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(-1\)
\(\chi_{4760}(911,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(-1\)
\(\chi_{4760}(2591,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(-1\)
\(\chi_{4760}(3151,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(-1\)
\(\chi_{4760}(3431,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(-1\)
\(\chi_{4760}(3711,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(-1\)
\(\chi_{4760}(4551,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(-1\)