Properties

Label 4788.1451
Modulus 47884788
Conductor 47884788
Order 66
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,1,2,2]))
 
pari: [g,chi] = znchar(Mod(1451,4788))
 

Basic properties

Modulus: 47884788
Conductor: 47884788
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4788.hn

χ4788(1451,)\chi_{4788}(1451,\cdot) χ4788(1607,)\chi_{4788}(1607,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.394164793052352.2

Values on generators

(2395,533,4105,1009)(2395,533,4105,1009)(1,e(16),e(13),e(13))(-1,e\left(\frac{1}{6}\right),e\left(\frac{1}{3}\right),e\left(\frac{1}{3}\right))

First values

aa 1-11155111113131717232325252929313137374141
χ4788(1451,a) \chi_{ 4788 }(1451, a) 1111e(56)e\left(\frac{5}{6}\right)1111e(16)e\left(\frac{1}{6}\right)e(23)e\left(\frac{2}{3}\right)e(23)e\left(\frac{2}{3}\right)e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)e(23)e\left(\frac{2}{3}\right)e(16)e\left(\frac{1}{6}\right)
sage: chi.jacobi_sum(n)
 
χ4788(1451,a)   \chi_{ 4788 }(1451,a) \; at   a=\;a = e.g. 2