Properties

Label 4788.953
Modulus 47884788
Conductor 5757
Order 1818
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,0,13]))
 
pari: [g,chi] = znchar(Mod(953,4788))
 

Basic properties

Modulus: 47884788
Conductor: 5757
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ57(41,)\chi_{57}(41,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4788.mm

χ4788(953,)\chi_{4788}(953,\cdot) χ4788(1457,)\chi_{4788}(1457,\cdot) χ4788(2465,)\chi_{4788}(2465,\cdot) χ4788(3221,)\chi_{4788}(3221,\cdot) χ4788(3473,)\chi_{4788}(3473,\cdot) χ4788(4733,)\chi_{4788}(4733,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Q(ζ57)+\Q(\zeta_{57})^+

Values on generators

(2395,533,4105,1009)(2395,533,4105,1009)(1,1,1,e(1318))(1,-1,1,e\left(\frac{13}{18}\right))

First values

aa 1-11155111113131717232325252929313137374141
χ4788(953,a) \chi_{ 4788 }(953, a) 1111e(118)e\left(\frac{1}{18}\right)e(16)e\left(\frac{1}{6}\right)e(1118)e\left(\frac{11}{18}\right)e(1318)e\left(\frac{13}{18}\right)e(1718)e\left(\frac{17}{18}\right)e(19)e\left(\frac{1}{9}\right)e(79)e\left(\frac{7}{9}\right)e(56)e\left(\frac{5}{6}\right)1-1e(89)e\left(\frac{8}{9}\right)
sage: chi.jacobi_sum(n)
 
χ4788(953,a)   \chi_{ 4788 }(953,a) \; at   a=\;a = e.g. 2