Properties

Label 4788.ke
Modulus 47884788
Conductor 15961596
Order 1818
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4788, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,9,3,1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(1655,4788))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 47884788
Conductor: 15961596
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1596.dq
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.18.134249609415269106264907893902102008113659904.1

Characters in Galois orbit

Character 1-1 11 55 1111 1313 1717 2323 2525 2929 3131 3737 4141
χ4788(1655,)\chi_{4788}(1655,\cdot) 11 11 e(29)e\left(\frac{2}{9}\right) e(13)e\left(\frac{1}{3}\right) e(79)e\left(\frac{7}{9}\right) e(29)e\left(\frac{2}{9}\right) e(49)e\left(\frac{4}{9}\right) e(49)e\left(\frac{4}{9}\right) e(49)e\left(\frac{4}{9}\right) 1-1 e(56)e\left(\frac{5}{6}\right) e(1318)e\left(\frac{13}{18}\right)
χ4788(2483,)\chi_{4788}(2483,\cdot) 11 11 e(19)e\left(\frac{1}{9}\right) e(23)e\left(\frac{2}{3}\right) e(89)e\left(\frac{8}{9}\right) e(19)e\left(\frac{1}{9}\right) e(29)e\left(\frac{2}{9}\right) e(29)e\left(\frac{2}{9}\right) e(29)e\left(\frac{2}{9}\right) 1-1 e(16)e\left(\frac{1}{6}\right) e(1118)e\left(\frac{11}{18}\right)
χ4788(2663,)\chi_{4788}(2663,\cdot) 11 11 e(89)e\left(\frac{8}{9}\right) e(13)e\left(\frac{1}{3}\right) e(19)e\left(\frac{1}{9}\right) e(89)e\left(\frac{8}{9}\right) e(79)e\left(\frac{7}{9}\right) e(79)e\left(\frac{7}{9}\right) e(79)e\left(\frac{7}{9}\right) 1-1 e(56)e\left(\frac{5}{6}\right) e(718)e\left(\frac{7}{18}\right)
χ4788(4175,)\chi_{4788}(4175,\cdot) 11 11 e(59)e\left(\frac{5}{9}\right) e(13)e\left(\frac{1}{3}\right) e(49)e\left(\frac{4}{9}\right) e(59)e\left(\frac{5}{9}\right) e(19)e\left(\frac{1}{9}\right) e(19)e\left(\frac{1}{9}\right) e(19)e\left(\frac{1}{9}\right) 1-1 e(56)e\left(\frac{5}{6}\right) e(118)e\left(\frac{1}{18}\right)
χ4788(4247,)\chi_{4788}(4247,\cdot) 11 11 e(79)e\left(\frac{7}{9}\right) e(23)e\left(\frac{2}{3}\right) e(29)e\left(\frac{2}{9}\right) e(79)e\left(\frac{7}{9}\right) e(59)e\left(\frac{5}{9}\right) e(59)e\left(\frac{5}{9}\right) e(59)e\left(\frac{5}{9}\right) 1-1 e(16)e\left(\frac{1}{6}\right) e(518)e\left(\frac{5}{18}\right)
χ4788(4499,)\chi_{4788}(4499,\cdot) 11 11 e(49)e\left(\frac{4}{9}\right) e(23)e\left(\frac{2}{3}\right) e(59)e\left(\frac{5}{9}\right) e(49)e\left(\frac{4}{9}\right) e(89)e\left(\frac{8}{9}\right) e(89)e\left(\frac{8}{9}\right) e(89)e\left(\frac{8}{9}\right) 1-1 e(16)e\left(\frac{1}{6}\right) e(1718)e\left(\frac{17}{18}\right)