Properties

Label 4800.3649
Modulus 48004800
Conductor 55
Order 22
Real yes
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4800, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,0,1]))
 
pari: [g,chi] = znchar(Mod(3649,4800))
 

Basic properties

Modulus: 48004800
Conductor: 55
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ5(4,)\chi_{5}(4,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4800.f

χ4800(3649,)\chi_{4800}(3649,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(5)\Q(\sqrt{5})

Values on generators

(4351,901,1601,577)(4351,901,1601,577)(1,1,1,1)(1,1,1,-1)

First values

aa 1-11177111113131717191923232929313137374141
χ4800(3649,a) \chi_{ 4800 }(3649, a) 11111-1111-11-1111-111111-111
sage: chi.jacobi_sum(n)
 
χ4800(3649,a)   \chi_{ 4800 }(3649,a) \; at   a=\;a = e.g. 2