Properties

Label 483.323
Modulus 483483
Conductor 33
Order 22
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0,0]))
 
pari: [g,chi] = znchar(Mod(323,483))
 

Basic properties

Modulus: 483483
Conductor: 33
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ3(2,)\chi_{3}(2,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 483.b

χ483(323,)\chi_{483}(323,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(3)\Q(\sqrt{-3})

Values on generators

(323,346,442)(323,346,442)(1,1,1)(-1,1,1)

First values

aa 1-11122445588101011111313161617171919
χ483(323,a) \chi_{ 483 }(323, a) 1-1111-1111-11-1111-111111-111
sage: chi.jacobi_sum(n)
 
χ483(323,a)   \chi_{ 483 }(323,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ483(323,))   \tau_{ a }( \chi_{ 483 }(323,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ483(323,),χ483(n,))   J(\chi_{ 483 }(323,·),\chi_{ 483 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ483(323,))  K(a,b,\chi_{ 483 }(323,·)) \; at   a,b=\; a,b = e.g. 1,2