Properties

Label 483.38
Modulus 483483
Conductor 483483
Order 6666
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([33,11,51]))
 
pari: [g,chi] = znchar(Mod(38,483))
 

Basic properties

Modulus: 483483
Conductor: 483483
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 6666
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 483.ba

χ483(5,)\chi_{483}(5,\cdot) χ483(17,)\chi_{483}(17,\cdot) χ483(38,)\chi_{483}(38,\cdot) χ483(80,)\chi_{483}(80,\cdot) χ483(89,)\chi_{483}(89,\cdot) χ483(122,)\chi_{483}(122,\cdot) χ483(143,)\chi_{483}(143,\cdot) χ483(152,)\chi_{483}(152,\cdot) χ483(194,)\chi_{483}(194,\cdot) χ483(227,)\chi_{483}(227,\cdot) χ483(290,)\chi_{483}(290,\cdot) χ483(320,)\chi_{483}(320,\cdot) χ483(332,)\chi_{483}(332,\cdot) χ483(341,)\chi_{483}(341,\cdot) χ483(362,)\chi_{483}(362,\cdot) χ483(383,)\chi_{483}(383,\cdot) χ483(425,)\chi_{483}(425,\cdot) χ483(458,)\chi_{483}(458,\cdot) χ483(467,)\chi_{483}(467,\cdot) χ483(479,)\chi_{483}(479,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ33)\Q(\zeta_{33})
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

(323,346,442)(323,346,442)(1,e(16),e(1722))(-1,e\left(\frac{1}{6}\right),e\left(\frac{17}{22}\right))

First values

aa 1-11122445588101011111313161617171919
χ483(38,a) \chi_{ 483 }(38, a) 1-111e(2566)e\left(\frac{25}{66}\right)e(2533)e\left(\frac{25}{33}\right)e(766)e\left(\frac{7}{66}\right)e(322)e\left(\frac{3}{22}\right)e(1633)e\left(\frac{16}{33}\right)e(433)e\left(\frac{4}{33}\right)e(722)e\left(\frac{7}{22}\right)e(1733)e\left(\frac{17}{33}\right)e(566)e\left(\frac{5}{66}\right)e(1433)e\left(\frac{14}{33}\right)
sage: chi.jacobi_sum(n)
 
χ483(38,a)   \chi_{ 483 }(38,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ483(38,))   \tau_{ a }( \chi_{ 483 }(38,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ483(38,),χ483(n,))   J(\chi_{ 483 }(38,·),\chi_{ 483 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ483(38,))  K(a,b,\chi_{ 483 }(38,·)) \; at   a,b=\; a,b = e.g. 1,2