Properties

Label 483.461
Modulus 483483
Conductor 2121
Order 22
Real yes
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1,0]))
 
pari: [g,chi] = znchar(Mod(461,483))
 

Basic properties

Modulus: 483483
Conductor: 2121
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ21(20,)\chi_{21}(20,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 483.d

χ483(461,)\chi_{483}(461,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(21)\Q(\sqrt{21})

Values on generators

(323,346,442)(323,346,442)(1,1,1)(-1,-1,1)

First values

aa 1-11122445588101011111313161617171919
χ483(461,a) \chi_{ 483 }(461, a) 11111-111111-11-11-11-111111-1
sage: chi.jacobi_sum(n)
 
χ483(461,a)   \chi_{ 483 }(461,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ483(461,))   \tau_{ a }( \chi_{ 483 }(461,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ483(461,),χ483(n,))   J(\chi_{ 483 }(461,·),\chi_{ 483 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ483(461,))  K(a,b,\chi_{ 483 }(461,·)) \; at   a,b=\; a,b = e.g. 1,2