Properties

Label 484.203
Modulus $484$
Conductor $484$
Order $110$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(484, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,24]))
 
pari: [g,chi] = znchar(Mod(203,484))
 

Basic properties

Modulus: \(484\)
Conductor: \(484\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 484.o

\(\chi_{484}(15,\cdot)\) \(\chi_{484}(31,\cdot)\) \(\chi_{484}(47,\cdot)\) \(\chi_{484}(59,\cdot)\) \(\chi_{484}(71,\cdot)\) \(\chi_{484}(75,\cdot)\) \(\chi_{484}(91,\cdot)\) \(\chi_{484}(103,\cdot)\) \(\chi_{484}(115,\cdot)\) \(\chi_{484}(119,\cdot)\) \(\chi_{484}(135,\cdot)\) \(\chi_{484}(147,\cdot)\) \(\chi_{484}(159,\cdot)\) \(\chi_{484}(163,\cdot)\) \(\chi_{484}(179,\cdot)\) \(\chi_{484}(191,\cdot)\) \(\chi_{484}(203,\cdot)\) \(\chi_{484}(207,\cdot)\) \(\chi_{484}(223,\cdot)\) \(\chi_{484}(235,\cdot)\) \(\chi_{484}(247,\cdot)\) \(\chi_{484}(267,\cdot)\) \(\chi_{484}(279,\cdot)\) \(\chi_{484}(291,\cdot)\) \(\chi_{484}(295,\cdot)\) \(\chi_{484}(311,\cdot)\) \(\chi_{484}(335,\cdot)\) \(\chi_{484}(339,\cdot)\) \(\chi_{484}(355,\cdot)\) \(\chi_{484}(367,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((243,365)\) → \((-1,e\left(\frac{12}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 484 }(203, a) \) \(-1\)\(1\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{8}{55}\right)\)\(e\left(\frac{3}{110}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{2}{55}\right)\)\(e\left(\frac{93}{110}\right)\)\(e\left(\frac{38}{55}\right)\)\(e\left(\frac{67}{110}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{17}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 484 }(203,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 484 }(203,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 484 }(203,·),\chi_{ 484 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 484 }(203,·)) \;\) at \(\; a,b = \) e.g. 1,2