sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4840, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([22,22,11,16]))
pari:[g,chi] = znchar(Mod(947,4840))
Modulus: | 4840 | |
Conductor: | 4840 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 44 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ4840(67,⋅)
χ4840(507,⋅)
χ4840(683,⋅)
χ4840(947,⋅)
χ4840(1123,⋅)
χ4840(1387,⋅)
χ4840(1563,⋅)
χ4840(1827,⋅)
χ4840(2003,⋅)
χ4840(2267,⋅)
χ4840(2443,⋅)
χ4840(2707,⋅)
χ4840(2883,⋅)
χ4840(3323,⋅)
χ4840(3587,⋅)
χ4840(3763,⋅)
χ4840(4027,⋅)
χ4840(4203,⋅)
χ4840(4467,⋅)
χ4840(4643,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3631,2421,1937,4721) → (−1,−1,i,e(114))
a |
−1 | 1 | 3 | 7 | 9 | 13 | 17 | 19 | 21 | 23 | 27 | 29 |
χ4840(947,a) |
1 | 1 | −i | e(4413) | −1 | e(4443) | e(443) | e(2215) | e(221) | e(4431) | i | e(112) |
sage:chi.jacobi_sum(n)