from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4840, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([22,22,11,16]))
pari: [g,chi] = znchar(Mod(947,4840))
Basic properties
Modulus: | \(4840\) | |
Conductor: | \(4840\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(44\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4840.cs
\(\chi_{4840}(67,\cdot)\) \(\chi_{4840}(507,\cdot)\) \(\chi_{4840}(683,\cdot)\) \(\chi_{4840}(947,\cdot)\) \(\chi_{4840}(1123,\cdot)\) \(\chi_{4840}(1387,\cdot)\) \(\chi_{4840}(1563,\cdot)\) \(\chi_{4840}(1827,\cdot)\) \(\chi_{4840}(2003,\cdot)\) \(\chi_{4840}(2267,\cdot)\) \(\chi_{4840}(2443,\cdot)\) \(\chi_{4840}(2707,\cdot)\) \(\chi_{4840}(2883,\cdot)\) \(\chi_{4840}(3323,\cdot)\) \(\chi_{4840}(3587,\cdot)\) \(\chi_{4840}(3763,\cdot)\) \(\chi_{4840}(4027,\cdot)\) \(\chi_{4840}(4203,\cdot)\) \(\chi_{4840}(4467,\cdot)\) \(\chi_{4840}(4643,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{44})\) |
Fixed field: | Number field defined by a degree 44 polynomial |
Values on generators
\((3631,2421,1937,4721)\) → \((-1,-1,i,e\left(\frac{4}{11}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 4840 }(947, a) \) | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{13}{44}\right)\) | \(-1\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(i\) | \(e\left(\frac{2}{11}\right)\) |
sage: chi.jacobi_sum(n)