Properties

Label 485.23
Modulus $485$
Conductor $485$
Order $96$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(485, base_ring=CyclotomicField(96))
 
M = H._module
 
chi = DirichletCharacter(H, M([72,77]))
 
pari: [g,chi] = znchar(Mod(23,485))
 

Basic properties

Modulus: \(485\)
Conductor: \(485\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(96\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 485.br

\(\chi_{485}(7,\cdot)\) \(\chi_{485}(13,\cdot)\) \(\chi_{485}(23,\cdot)\) \(\chi_{485}(37,\cdot)\) \(\chi_{485}(57,\cdot)\) \(\chi_{485}(68,\cdot)\) \(\chi_{485}(82,\cdot)\) \(\chi_{485}(83,\cdot)\) \(\chi_{485}(87,\cdot)\) \(\chi_{485}(107,\cdot)\) \(\chi_{485}(112,\cdot)\) \(\chi_{485}(118,\cdot)\) \(\chi_{485}(137,\cdot)\) \(\chi_{485}(138,\cdot)\) \(\chi_{485}(153,\cdot)\) \(\chi_{485}(157,\cdot)\) \(\chi_{485}(173,\cdot)\) \(\chi_{485}(187,\cdot)\) \(\chi_{485}(208,\cdot)\) \(\chi_{485}(223,\cdot)\) \(\chi_{485}(232,\cdot)\) \(\chi_{485}(252,\cdot)\) \(\chi_{485}(268,\cdot)\) \(\chi_{485}(278,\cdot)\) \(\chi_{485}(308,\cdot)\) \(\chi_{485}(317,\cdot)\) \(\chi_{485}(362,\cdot)\) \(\chi_{485}(383,\cdot)\) \(\chi_{485}(393,\cdot)\) \(\chi_{485}(427,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{96})$
Fixed field: Number field defined by a degree 96 polynomial

Values on generators

\((292,296)\) → \((-i,e\left(\frac{77}{96}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 485 }(23, a) \) \(1\)\(1\)\(e\left(\frac{1}{48}\right)\)\(e\left(\frac{19}{48}\right)\)\(e\left(\frac{1}{24}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{59}{96}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{47}{48}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{29}{96}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 485 }(23,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 485 }(23,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 485 }(23,·),\chi_{ 485 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 485 }(23,·)) \;\) at \(\; a,b = \) e.g. 1,2