Properties

Label 485.64
Modulus 485485
Conductor 485485
Order 88
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(485, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,1]))
 
pari: [g,chi] = znchar(Mod(64,485))
 

Basic properties

Modulus: 485485
Conductor: 485485
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 485.p

χ485(64,)\chi_{485}(64,\cdot) χ485(144,)\chi_{485}(144,\cdot) χ485(244,)\chi_{485}(244,\cdot) χ485(324,)\chi_{485}(324,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.8.50498927798820625.1

Values on generators

(292,296)(292,296)(1,e(18))(-1,e\left(\frac{1}{8}\right))

First values

aa 1-11122334466778899111112121313
χ485(64,a) \chi_{ 485 }(64, a) 1111i-iii1-111e(38)e\left(\frac{3}{8}\right)ii1-1i-ii-ie(58)e\left(\frac{5}{8}\right)
sage: chi.jacobi_sum(n)
 
χ485(64,a)   \chi_{ 485 }(64,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ485(64,))   \tau_{ a }( \chi_{ 485 }(64,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ485(64,),χ485(n,))   J(\chi_{ 485 }(64,·),\chi_{ 485 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ485(64,))  K(a,b,\chi_{ 485 }(64,·)) \; at   a,b=\; a,b = e.g. 1,2