from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(495, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([40,15,36]))
pari: [g,chi] = znchar(Mod(97,495))
Basic properties
Modulus: | \(495\) | |
Conductor: | \(495\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 495.bt
\(\chi_{495}(58,\cdot)\) \(\chi_{495}(97,\cdot)\) \(\chi_{495}(103,\cdot)\) \(\chi_{495}(148,\cdot)\) \(\chi_{495}(157,\cdot)\) \(\chi_{495}(202,\cdot)\) \(\chi_{495}(223,\cdot)\) \(\chi_{495}(247,\cdot)\) \(\chi_{495}(268,\cdot)\) \(\chi_{495}(313,\cdot)\) \(\chi_{495}(322,\cdot)\) \(\chi_{495}(328,\cdot)\) \(\chi_{495}(367,\cdot)\) \(\chi_{495}(412,\cdot)\) \(\chi_{495}(427,\cdot)\) \(\chi_{495}(493,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((56,397,46)\) → \((e\left(\frac{2}{3}\right),i,e\left(\frac{3}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) | \(23\) |
\( \chi_{ 495 }(97, a) \) | \(-1\) | \(1\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{12}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)