sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(495, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([40,15,36]))
pari:[g,chi] = znchar(Mod(97,495))
Modulus: | 495 | |
Conductor: | 495 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 60 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ495(58,⋅)
χ495(97,⋅)
χ495(103,⋅)
χ495(148,⋅)
χ495(157,⋅)
χ495(202,⋅)
χ495(223,⋅)
χ495(247,⋅)
χ495(268,⋅)
χ495(313,⋅)
χ495(322,⋅)
χ495(328,⋅)
χ495(367,⋅)
χ495(412,⋅)
χ495(427,⋅)
χ495(493,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(56,397,46) → (e(32),i,e(53))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 13 | 14 | 16 | 17 | 19 | 23 |
χ495(97,a) |
−1 | 1 | e(6031) | e(301) | e(607) | e(2011) | e(6041) | e(3019) | e(151) | e(2013) | e(103) | e(121) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)