Properties

Label 495.97
Modulus $495$
Conductor $495$
Order $60$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([40,15,36]))
 
pari: [g,chi] = znchar(Mod(97,495))
 

Basic properties

Modulus: \(495\)
Conductor: \(495\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 495.bt

\(\chi_{495}(58,\cdot)\) \(\chi_{495}(97,\cdot)\) \(\chi_{495}(103,\cdot)\) \(\chi_{495}(148,\cdot)\) \(\chi_{495}(157,\cdot)\) \(\chi_{495}(202,\cdot)\) \(\chi_{495}(223,\cdot)\) \(\chi_{495}(247,\cdot)\) \(\chi_{495}(268,\cdot)\) \(\chi_{495}(313,\cdot)\) \(\chi_{495}(322,\cdot)\) \(\chi_{495}(328,\cdot)\) \(\chi_{495}(367,\cdot)\) \(\chi_{495}(412,\cdot)\) \(\chi_{495}(427,\cdot)\) \(\chi_{495}(493,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((56,397,46)\) → \((e\left(\frac{2}{3}\right),i,e\left(\frac{3}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 495 }(97, a) \) \(-1\)\(1\)\(e\left(\frac{31}{60}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{7}{60}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{41}{60}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{1}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 495 }(97,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 495 }(97,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 495 }(97,·),\chi_{ 495 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 495 }(97,·)) \;\) at \(\; a,b = \) e.g. 1,2