sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([26,49]))
pari:[g,chi] = znchar(Mod(203,507))
Modulus: | 507 | |
Conductor: | 507 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 52 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ507(5,⋅)
χ507(8,⋅)
χ507(44,⋅)
χ507(47,⋅)
χ507(83,⋅)
χ507(86,⋅)
χ507(122,⋅)
χ507(125,⋅)
χ507(161,⋅)
χ507(164,⋅)
χ507(200,⋅)
χ507(203,⋅)
χ507(242,⋅)
χ507(278,⋅)
χ507(281,⋅)
χ507(317,⋅)
χ507(320,⋅)
χ507(356,⋅)
χ507(359,⋅)
χ507(395,⋅)
χ507(398,⋅)
χ507(434,⋅)
χ507(473,⋅)
χ507(476,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(170,340) → (−1,e(5249))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 14 | 16 | 17 |
χ507(203,a) |
1 | 1 | e(5223) | e(2623) | e(5251) | e(5243) | e(5217) | e(2611) | e(5229) | e(267) | e(1310) | e(131) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)