Basic properties
Modulus: | \(507\) | |
Conductor: | \(169\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(39\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{169}(42,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 507.q
\(\chi_{507}(16,\cdot)\) \(\chi_{507}(55,\cdot)\) \(\chi_{507}(61,\cdot)\) \(\chi_{507}(94,\cdot)\) \(\chi_{507}(100,\cdot)\) \(\chi_{507}(133,\cdot)\) \(\chi_{507}(139,\cdot)\) \(\chi_{507}(172,\cdot)\) \(\chi_{507}(178,\cdot)\) \(\chi_{507}(211,\cdot)\) \(\chi_{507}(217,\cdot)\) \(\chi_{507}(250,\cdot)\) \(\chi_{507}(256,\cdot)\) \(\chi_{507}(289,\cdot)\) \(\chi_{507}(295,\cdot)\) \(\chi_{507}(328,\cdot)\) \(\chi_{507}(334,\cdot)\) \(\chi_{507}(367,\cdot)\) \(\chi_{507}(373,\cdot)\) \(\chi_{507}(406,\cdot)\) \(\chi_{507}(412,\cdot)\) \(\chi_{507}(445,\cdot)\) \(\chi_{507}(451,\cdot)\) \(\chi_{507}(490,\cdot)\)
Related number fields
Field of values: | $\Q(\zeta_{39})$ |
Fixed field: | Number field defined by a degree 39 polynomial |
Values on generators
\((170,340)\) → \((1,e\left(\frac{19}{39}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 507 }(211, a) \) | \(1\) | \(1\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{5}{39}\right)\) |