Properties

Label 507.22
Modulus 507507
Conductor 1313
Order 33
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,4]))
 
pari: [g,chi] = znchar(Mod(22,507))
 

Basic properties

Modulus: 507507
Conductor: 1313
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 33
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ13(9,)\chi_{13}(9,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 507.e

χ507(22,)\chi_{507}(22,\cdot) χ507(484,)\chi_{507}(484,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 3.3.169.1

Values on generators

(170,340)(170,340)(1,e(23))(1,e\left(\frac{2}{3}\right))

First values

aa 1-111224455778810101111141416161717
χ507(22,a) \chi_{ 507 }(22, a) 1111e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)11e(13)e\left(\frac{1}{3}\right)11e(23)e\left(\frac{2}{3}\right)e(23)e\left(\frac{2}{3}\right)11e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)
sage: chi.jacobi_sum(n)
 
χ507(22,a)   \chi_{ 507 }(22,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ507(22,))   \tau_{ a }( \chi_{ 507 }(22,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ507(22,),χ507(n,))   J(\chi_{ 507 }(22,·),\chi_{ 507 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ507(22,))  K(a,b,\chi_{ 507 }(22,·)) \; at   a,b=\; a,b = e.g. 1,2