Properties

Label 51.35
Modulus 5151
Conductor 33
Order 22
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(51, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0]))
 
pari: [g,chi] = znchar(Mod(35,51))
 

Basic properties

Modulus: 5151
Conductor: 33
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ3(2,)\chi_{3}(2,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 51.b

χ51(35,)\chi_{51}(35,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(3)\Q(\sqrt{-3})

Values on generators

(35,37)(35,37)(1,1)(-1,1)

First values

aa 1-111224455778810101111131314141616
χ51(35,a) \chi_{ 51 }(35, a) 1-1111-1111-1111-1111-1111-111
sage: chi.jacobi_sum(n)
 
χ51(35,a)   \chi_{ 51 }(35,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ51(35,))   \tau_{ a }( \chi_{ 51 }(35,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ51(35,),χ51(n,))   J(\chi_{ 51 }(35,·),\chi_{ 51 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ51(35,))  K(a,b,\chi_{ 51 }(35,·)) \; at   a,b=\; a,b = e.g. 1,2