Properties

Label 510.1
Modulus 510510
Conductor 11
Order 11
Real yes
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(510, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,0]))
 
pari: [g,chi] = znchar(Mod(1,510))
 

Basic properties

Modulus: 510510
Conductor: 11
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 11
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ1(0,)\chi_{1}(0,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 510.a

χ510(1,)\chi_{510}(1,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q\Q

Values on generators

(341,307,241)(341,307,241)(1,1,1)(1,1,1)

First values

aa 1-11177111113131919232329293131373741414343
χ510(1,a) \chi_{ 510 }(1, a) 111111111111111111111111
sage: chi.jacobi_sum(n)
 
χ510(1,a)   \chi_{ 510 }(1,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ510(1,))   \tau_{ a }( \chi_{ 510 }(1,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ510(1,),χ510(n,))   J(\chi_{ 510 }(1,·),\chi_{ 510 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ510(1,))  K(a,b,\chi_{ 510 }(1,·)) \; at   a,b=\; a,b = e.g. 1,2