Properties

Label 5184.73
Modulus $5184$
Conductor $864$
Order $72$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5184, base_ring=CyclotomicField(72))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,27,40]))
 
pari: [g,chi] = znchar(Mod(73,5184))
 

Basic properties

Modulus: \(5184\)
Conductor: \(864\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(72\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{864}(349,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5184.ck

\(\chi_{5184}(73,\cdot)\) \(\chi_{5184}(361,\cdot)\) \(\chi_{5184}(505,\cdot)\) \(\chi_{5184}(793,\cdot)\) \(\chi_{5184}(937,\cdot)\) \(\chi_{5184}(1225,\cdot)\) \(\chi_{5184}(1369,\cdot)\) \(\chi_{5184}(1657,\cdot)\) \(\chi_{5184}(1801,\cdot)\) \(\chi_{5184}(2089,\cdot)\) \(\chi_{5184}(2233,\cdot)\) \(\chi_{5184}(2521,\cdot)\) \(\chi_{5184}(2665,\cdot)\) \(\chi_{5184}(2953,\cdot)\) \(\chi_{5184}(3097,\cdot)\) \(\chi_{5184}(3385,\cdot)\) \(\chi_{5184}(3529,\cdot)\) \(\chi_{5184}(3817,\cdot)\) \(\chi_{5184}(3961,\cdot)\) \(\chi_{5184}(4249,\cdot)\) \(\chi_{5184}(4393,\cdot)\) \(\chi_{5184}(4681,\cdot)\) \(\chi_{5184}(4825,\cdot)\) \(\chi_{5184}(5113,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Values on generators

\((2431,325,1217)\) → \((1,e\left(\frac{3}{8}\right),e\left(\frac{5}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 5184 }(73, a) \) \(1\)\(1\)\(e\left(\frac{11}{72}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{7}{72}\right)\)\(e\left(\frac{5}{72}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{11}{36}\right)\)\(e\left(\frac{49}{72}\right)\)\(e\left(\frac{1}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5184 }(73,a) \;\) at \(\;a = \) e.g. 2