Properties

Label 5239.1201
Modulus $5239$
Conductor $5239$
Order $260$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5239, base_ring=CyclotomicField(260))
 
M = H._module
 
chi = DirichletCharacter(H, M([155,234]))
 
pari: [g,chi] = znchar(Mod(1201,5239))
 

Basic properties

Modulus: \(5239\)
Conductor: \(5239\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(260\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5239.du

\(\chi_{5239}(60,\cdot)\) \(\chi_{5239}(122,\cdot)\) \(\chi_{5239}(151,\cdot)\) \(\chi_{5239}(213,\cdot)\) \(\chi_{5239}(294,\cdot)\) \(\chi_{5239}(333,\cdot)\) \(\chi_{5239}(356,\cdot)\) \(\chi_{5239}(395,\cdot)\) \(\chi_{5239}(463,\cdot)\) \(\chi_{5239}(525,\cdot)\) \(\chi_{5239}(554,\cdot)\) \(\chi_{5239}(616,\cdot)\) \(\chi_{5239}(697,\cdot)\) \(\chi_{5239}(736,\cdot)\) \(\chi_{5239}(759,\cdot)\) \(\chi_{5239}(798,\cdot)\) \(\chi_{5239}(866,\cdot)\) \(\chi_{5239}(928,\cdot)\) \(\chi_{5239}(957,\cdot)\) \(\chi_{5239}(1019,\cdot)\) \(\chi_{5239}(1100,\cdot)\) \(\chi_{5239}(1139,\cdot)\) \(\chi_{5239}(1162,\cdot)\) \(\chi_{5239}(1201,\cdot)\) \(\chi_{5239}(1269,\cdot)\) \(\chi_{5239}(1331,\cdot)\) \(\chi_{5239}(1360,\cdot)\) \(\chi_{5239}(1503,\cdot)\) \(\chi_{5239}(1542,\cdot)\) \(\chi_{5239}(1565,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{260})$
Fixed field: Number field defined by a degree 260 polynomial (not computed)

Values on generators

\((1861,1522)\) → \((e\left(\frac{31}{52}\right),e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 5239 }(1201, a) \) \(1\)\(1\)\(e\left(\frac{51}{260}\right)\)\(e\left(\frac{107}{130}\right)\)\(e\left(\frac{51}{130}\right)\)\(e\left(\frac{19}{52}\right)\)\(e\left(\frac{1}{52}\right)\)\(e\left(\frac{257}{260}\right)\)\(e\left(\frac{153}{260}\right)\)\(e\left(\frac{42}{65}\right)\)\(e\left(\frac{73}{130}\right)\)\(e\left(\frac{27}{260}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5239 }(1201,a) \;\) at \(\;a = \) e.g. 2