Properties

Label 5239.231
Modulus $5239$
Conductor $5239$
Order $390$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5239, base_ring=CyclotomicField(390))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,286]))
 
pari: [g,chi] = znchar(Mod(231,5239))
 

Basic properties

Modulus: \(5239\)
Conductor: \(5239\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(390\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5239.ec

\(\chi_{5239}(82,\cdot)\) \(\chi_{5239}(134,\cdot)\) \(\chi_{5239}(173,\cdot)\) \(\chi_{5239}(205,\cdot)\) \(\chi_{5239}(231,\cdot)\) \(\chi_{5239}(348,\cdot)\) \(\chi_{5239}(381,\cdot)\) \(\chi_{5239}(400,\cdot)\) \(\chi_{5239}(537,\cdot)\) \(\chi_{5239}(576,\cdot)\) \(\chi_{5239}(608,\cdot)\) \(\chi_{5239}(634,\cdot)\) \(\chi_{5239}(751,\cdot)\) \(\chi_{5239}(784,\cdot)\) \(\chi_{5239}(803,\cdot)\) \(\chi_{5239}(888,\cdot)\) \(\chi_{5239}(940,\cdot)\) \(\chi_{5239}(979,\cdot)\) \(\chi_{5239}(1011,\cdot)\) \(\chi_{5239}(1154,\cdot)\) \(\chi_{5239}(1187,\cdot)\) \(\chi_{5239}(1291,\cdot)\) \(\chi_{5239}(1343,\cdot)\) \(\chi_{5239}(1382,\cdot)\) \(\chi_{5239}(1414,\cdot)\) \(\chi_{5239}(1440,\cdot)\) \(\chi_{5239}(1557,\cdot)\) \(\chi_{5239}(1590,\cdot)\) \(\chi_{5239}(1609,\cdot)\) \(\chi_{5239}(1694,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{195})$
Fixed field: Number field defined by a degree 390 polynomial (not computed)

Values on generators

\((1861,1522)\) → \((e\left(\frac{11}{78}\right),e\left(\frac{11}{15}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 5239 }(231, a) \) \(1\)\(1\)\(e\left(\frac{289}{390}\right)\)\(e\left(\frac{43}{195}\right)\)\(e\left(\frac{94}{195}\right)\)\(e\left(\frac{73}{78}\right)\)\(e\left(\frac{25}{26}\right)\)\(e\left(\frac{81}{130}\right)\)\(e\left(\frac{29}{130}\right)\)\(e\left(\frac{86}{195}\right)\)\(e\left(\frac{44}{65}\right)\)\(e\left(\frac{51}{130}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5239 }(231,a) \;\) at \(\;a = \) e.g. 2