Properties

Label 525.257
Modulus 525525
Conductor 105105
Order 1212
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,3,10]))
 
pari: [g,chi] = znchar(Mod(257,525))
 

Basic properties

Modulus: 525525
Conductor: 105105
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ105(47,)\chi_{105}(47,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 525.be

χ525(68,)\chi_{525}(68,\cdot) χ525(143,)\chi_{525}(143,\cdot) χ525(257,)\chi_{525}(257,\cdot) χ525(332,)\chi_{525}(332,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.0.402196204142578125.1

Values on generators

(176,127,451)(176,127,451)(1,i,e(56))(-1,i,e\left(\frac{5}{6}\right))

First values

aa 1-1112244881111131316161717191922222323
χ525(257,a) \chi_{ 525 }(257, a) 1-111e(512)e\left(\frac{5}{12}\right)e(56)e\left(\frac{5}{6}\right)iie(56)e\left(\frac{5}{6}\right)iie(23)e\left(\frac{2}{3}\right)e(712)e\left(\frac{7}{12}\right)e(23)e\left(\frac{2}{3}\right)iie(1112)e\left(\frac{11}{12}\right)
sage: chi.jacobi_sum(n)
 
χ525(257,a)   \chi_{ 525 }(257,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ525(257,))   \tau_{ a }( \chi_{ 525 }(257,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ525(257,),χ525(n,))   J(\chi_{ 525 }(257,·),\chi_{ 525 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ525(257,))  K(a,b,\chi_{ 525 }(257,·)) \; at   a,b=\; a,b = e.g. 1,2