Properties

Label 532.157
Modulus $532$
Conductor $133$
Order $18$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(532, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,16]))
 
pari: [g,chi] = znchar(Mod(157,532))
 

Basic properties

Modulus: \(532\)
Conductor: \(133\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{133}(24,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 532.bx

\(\chi_{532}(17,\cdot)\) \(\chi_{532}(61,\cdot)\) \(\chi_{532}(73,\cdot)\) \(\chi_{532}(157,\cdot)\) \(\chi_{532}(313,\cdot)\) \(\chi_{532}(481,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.0.1369393352927188877370217151752183.2

Values on generators

\((267,381,477)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{8}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 532 }(157, a) \) \(-1\)\(1\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{1}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 532 }(157,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 532 }(157,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 532 }(157,·),\chi_{ 532 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 532 }(157,·)) \;\) at \(\; a,b = \) e.g. 1,2