from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(532, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([0,15,16]))
pari: [g,chi] = znchar(Mod(5,532))
Basic properties
Modulus: | \(532\) | |
Conductor: | \(133\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(18\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{133}(5,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 532.ck
\(\chi_{532}(5,\cdot)\) \(\chi_{532}(101,\cdot)\) \(\chi_{532}(213,\cdot)\) \(\chi_{532}(397,\cdot)\) \(\chi_{532}(453,\cdot)\) \(\chi_{532}(465,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{9})\) |
Fixed field: | 18.0.1369393352927188877370217151752183.1 |
Values on generators
\((267,381,477)\) → \((1,e\left(\frac{5}{6}\right),e\left(\frac{8}{9}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 532 }(5, a) \) | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)