sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(538, base_ring=CyclotomicField(134))
M = H._module
chi = DirichletCharacter(H, M([64]))
pari:[g,chi] = znchar(Mod(21,538))
χ538(5,⋅)
χ538(21,⋅)
χ538(23,⋅)
χ538(25,⋅)
χ538(37,⋅)
χ538(41,⋅)
χ538(47,⋅)
χ538(53,⋅)
χ538(57,⋅)
χ538(61,⋅)
χ538(67,⋅)
χ538(81,⋅)
χ538(87,⋅)
χ538(93,⋅)
χ538(99,⋅)
χ538(105,⋅)
χ538(115,⋅)
χ538(117,⋅)
χ538(119,⋅)
χ538(121,⋅)
χ538(125,⋅)
χ538(131,⋅)
χ538(143,⋅)
χ538(169,⋅)
χ538(173,⋅)
χ538(177,⋅)
χ538(185,⋅)
χ538(205,⋅)
χ538(213,⋅)
χ538(235,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
271 → e(6732)
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ538(21,a) |
1 | 1 | e(674) | e(6723) | e(675) | e(678) | e(6757) | e(6755) | e(6727) | e(6710) | e(6734) | e(679) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)