Properties

Label 538.21
Modulus 538538
Conductor 269269
Order 6767
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(538, base_ring=CyclotomicField(134)) M = H._module chi = DirichletCharacter(H, M([64]))
 
Copy content pari:[g,chi] = znchar(Mod(21,538))
 

Basic properties

Modulus: 538538
Conductor: 269269
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 6767
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ269(21,)\chi_{269}(21,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 538.d

χ538(5,)\chi_{538}(5,\cdot) χ538(21,)\chi_{538}(21,\cdot) χ538(23,)\chi_{538}(23,\cdot) χ538(25,)\chi_{538}(25,\cdot) χ538(37,)\chi_{538}(37,\cdot) χ538(41,)\chi_{538}(41,\cdot) χ538(47,)\chi_{538}(47,\cdot) χ538(53,)\chi_{538}(53,\cdot) χ538(57,)\chi_{538}(57,\cdot) χ538(61,)\chi_{538}(61,\cdot) χ538(67,)\chi_{538}(67,\cdot) χ538(81,)\chi_{538}(81,\cdot) χ538(87,)\chi_{538}(87,\cdot) χ538(93,)\chi_{538}(93,\cdot) χ538(99,)\chi_{538}(99,\cdot) χ538(105,)\chi_{538}(105,\cdot) χ538(115,)\chi_{538}(115,\cdot) χ538(117,)\chi_{538}(117,\cdot) χ538(119,)\chi_{538}(119,\cdot) χ538(121,)\chi_{538}(121,\cdot) χ538(125,)\chi_{538}(125,\cdot) χ538(131,)\chi_{538}(131,\cdot) χ538(143,)\chi_{538}(143,\cdot) χ538(169,)\chi_{538}(169,\cdot) χ538(173,)\chi_{538}(173,\cdot) χ538(177,)\chi_{538}(177,\cdot) χ538(185,)\chi_{538}(185,\cdot) χ538(205,)\chi_{538}(205,\cdot) χ538(213,)\chi_{538}(213,\cdot) χ538(235,)\chi_{538}(235,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ67)\Q(\zeta_{67})
Fixed field: Number field defined by a degree 67 polynomial

Values on generators

271271e(3267)e\left(\frac{32}{67}\right)

First values

aa 1-11133557799111113131515171719192121
χ538(21,a) \chi_{ 538 }(21, a) 1111e(467)e\left(\frac{4}{67}\right)e(2367)e\left(\frac{23}{67}\right)e(567)e\left(\frac{5}{67}\right)e(867)e\left(\frac{8}{67}\right)e(5767)e\left(\frac{57}{67}\right)e(5567)e\left(\frac{55}{67}\right)e(2767)e\left(\frac{27}{67}\right)e(1067)e\left(\frac{10}{67}\right)e(3467)e\left(\frac{34}{67}\right)e(967)e\left(\frac{9}{67}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ538(21,a)   \chi_{ 538 }(21,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ538(21,))   \tau_{ a }( \chi_{ 538 }(21,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ538(21,),χ538(n,))   J(\chi_{ 538 }(21,·),\chi_{ 538 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ538(21,))  K(a,b,\chi_{ 538 }(21,·)) \; at   a,b=\; a,b = e.g. 1,2