Properties

Label 538.21
Modulus $538$
Conductor $269$
Order $67$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(134))
 
M = H._module
 
chi = DirichletCharacter(H, M([64]))
 
pari: [g,chi] = znchar(Mod(21,538))
 

Basic properties

Modulus: \(538\)
Conductor: \(269\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(67\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{269}(21,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 538.d

\(\chi_{538}(5,\cdot)\) \(\chi_{538}(21,\cdot)\) \(\chi_{538}(23,\cdot)\) \(\chi_{538}(25,\cdot)\) \(\chi_{538}(37,\cdot)\) \(\chi_{538}(41,\cdot)\) \(\chi_{538}(47,\cdot)\) \(\chi_{538}(53,\cdot)\) \(\chi_{538}(57,\cdot)\) \(\chi_{538}(61,\cdot)\) \(\chi_{538}(67,\cdot)\) \(\chi_{538}(81,\cdot)\) \(\chi_{538}(87,\cdot)\) \(\chi_{538}(93,\cdot)\) \(\chi_{538}(99,\cdot)\) \(\chi_{538}(105,\cdot)\) \(\chi_{538}(115,\cdot)\) \(\chi_{538}(117,\cdot)\) \(\chi_{538}(119,\cdot)\) \(\chi_{538}(121,\cdot)\) \(\chi_{538}(125,\cdot)\) \(\chi_{538}(131,\cdot)\) \(\chi_{538}(143,\cdot)\) \(\chi_{538}(169,\cdot)\) \(\chi_{538}(173,\cdot)\) \(\chi_{538}(177,\cdot)\) \(\chi_{538}(185,\cdot)\) \(\chi_{538}(205,\cdot)\) \(\chi_{538}(213,\cdot)\) \(\chi_{538}(235,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{67})$
Fixed field: Number field defined by a degree 67 polynomial

Values on generators

\(271\) → \(e\left(\frac{32}{67}\right)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 538 }(21, a) \) \(1\)\(1\)\(e\left(\frac{4}{67}\right)\)\(e\left(\frac{23}{67}\right)\)\(e\left(\frac{5}{67}\right)\)\(e\left(\frac{8}{67}\right)\)\(e\left(\frac{57}{67}\right)\)\(e\left(\frac{55}{67}\right)\)\(e\left(\frac{27}{67}\right)\)\(e\left(\frac{10}{67}\right)\)\(e\left(\frac{34}{67}\right)\)\(e\left(\frac{9}{67}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 538 }(21,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 538 }(21,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 538 }(21,·),\chi_{ 538 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 538 }(21,·)) \;\) at \(\; a,b = \) e.g. 1,2