Properties

Label 538.351
Modulus 538538
Conductor 269269
Order 44
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([3]))
 
pari: [g,chi] = znchar(Mod(351,538))
 

Basic properties

Modulus: 538538
Conductor: 269269
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ269(82,)\chi_{269}(82,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 538.c

χ538(187,)\chi_{538}(187,\cdot) χ538(351,)\chi_{538}(351,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.0.19465109.1

Values on generators

271271i-i

First values

aa 1-11133557799111113131515171719192121
χ538(351,a) \chi_{ 538 }(351, a) 1-111i-i11ii1-11-11-1i-ii-iii11
sage: chi.jacobi_sum(n)
 
χ538(351,a)   \chi_{ 538 }(351,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ538(351,))   \tau_{ a }( \chi_{ 538 }(351,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ538(351,),χ538(n,))   J(\chi_{ 538 }(351,·),\chi_{ 538 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ538(351,))  K(a,b,\chi_{ 538 }(351,·)) \; at   a,b=\; a,b = e.g. 1,2