Properties

Label 539.27
Modulus 539539
Conductor 539539
Order 7070
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(539, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,28]))
 
pari: [g,chi] = znchar(Mod(27,539))
 

Basic properties

Modulus: 539539
Conductor: 539539
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 7070
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 539.bb

χ539(20,)\chi_{539}(20,\cdot) χ539(27,)\chi_{539}(27,\cdot) χ539(69,)\chi_{539}(69,\cdot) χ539(104,)\chi_{539}(104,\cdot) χ539(125,)\chi_{539}(125,\cdot) χ539(174,)\chi_{539}(174,\cdot) χ539(181,)\chi_{539}(181,\cdot) χ539(202,)\chi_{539}(202,\cdot) χ539(223,)\chi_{539}(223,\cdot) χ539(251,)\chi_{539}(251,\cdot) χ539(258,)\chi_{539}(258,\cdot) χ539(279,)\chi_{539}(279,\cdot) χ539(300,)\chi_{539}(300,\cdot) χ539(328,)\chi_{539}(328,\cdot) χ539(335,)\chi_{539}(335,\cdot) χ539(356,)\chi_{539}(356,\cdot) χ539(377,)\chi_{539}(377,\cdot) χ539(405,)\chi_{539}(405,\cdot) χ539(412,)\chi_{539}(412,\cdot) χ539(433,)\chi_{539}(433,\cdot) χ539(454,)\chi_{539}(454,\cdot) χ539(482,)\chi_{539}(482,\cdot) χ539(510,)\chi_{539}(510,\cdot) χ539(531,)\chi_{539}(531,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ35)\Q(\zeta_{35})
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

(199,442)(199,442)(e(114),e(25))(e\left(\frac{1}{14}\right),e\left(\frac{2}{5}\right))

First values

aa 1-11122334455668899101012121313
χ539(27,a) \chi_{ 539 }(27, a) 1-111e(935)e\left(\frac{9}{35}\right)e(1970)e\left(\frac{19}{70}\right)e(1835)e\left(\frac{18}{35}\right)e(4770)e\left(\frac{47}{70}\right)e(3770)e\left(\frac{37}{70}\right)e(2735)e\left(\frac{27}{35}\right)e(1935)e\left(\frac{19}{35}\right)e(1314)e\left(\frac{13}{14}\right)e(1114)e\left(\frac{11}{14}\right)e(5370)e\left(\frac{53}{70}\right)
sage: chi.jacobi_sum(n)
 
χ539(27,a)   \chi_{ 539 }(27,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ539(27,))   \tau_{ a }( \chi_{ 539 }(27,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ539(27,),χ539(n,))   J(\chi_{ 539 }(27,·),\chi_{ 539 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ539(27,))  K(a,b,\chi_{ 539 }(27,·)) \; at   a,b=\; a,b = e.g. 1,2