Properties

Label 5400.937
Modulus $5400$
Conductor $225$
Order $60$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5400, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,40,27]))
 
pari: [g,chi] = znchar(Mod(937,5400))
 

Basic properties

Modulus: \(5400\)
Conductor: \(225\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{225}(187,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5400.ep

\(\chi_{5400}(73,\cdot)\) \(\chi_{5400}(577,\cdot)\) \(\chi_{5400}(937,\cdot)\) \(\chi_{5400}(1153,\cdot)\) \(\chi_{5400}(1873,\cdot)\) \(\chi_{5400}(2017,\cdot)\) \(\chi_{5400}(2233,\cdot)\) \(\chi_{5400}(2737,\cdot)\) \(\chi_{5400}(2953,\cdot)\) \(\chi_{5400}(3097,\cdot)\) \(\chi_{5400}(3313,\cdot)\) \(\chi_{5400}(3817,\cdot)\) \(\chi_{5400}(4033,\cdot)\) \(\chi_{5400}(4177,\cdot)\) \(\chi_{5400}(4897,\cdot)\) \(\chi_{5400}(5113,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((1351,2701,1001,2377)\) → \((1,1,e\left(\frac{2}{3}\right),e\left(\frac{9}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 5400 }(937, a) \) \(-1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{53}{60}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{17}{60}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{2}{15}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5400 }(937,a) \;\) at \(\;a = \) e.g. 2