Properties

Label 5408.3131
Modulus $5408$
Conductor $416$
Order $24$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,3,14]))
 
pari: [g,chi] = znchar(Mod(3131,5408))
 

Basic properties

Modulus: \(5408\)
Conductor: \(416\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{416}(219,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5408.cd

\(\chi_{5408}(19,\cdot)\) \(\chi_{5408}(427,\cdot)\) \(\chi_{5408}(1939,\cdot)\) \(\chi_{5408}(2347,\cdot)\) \(\chi_{5408}(2723,\cdot)\) \(\chi_{5408}(3131,\cdot)\) \(\chi_{5408}(4643,\cdot)\) \(\chi_{5408}(5051,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.31808511574029960248322509834333516654369310400053248.2

Values on generators

\((2367,677,1185)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{7}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 5408 }(3131, a) \) \(1\)\(1\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5408 }(3131,a) \;\) at \(\;a = \) e.g. 2