from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5408, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([12,3,14]))
pari: [g,chi] = znchar(Mod(3131,5408))
Basic properties
Modulus: | \(5408\) | |
Conductor: | \(416\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(24\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{416}(219,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 5408.cd
\(\chi_{5408}(19,\cdot)\) \(\chi_{5408}(427,\cdot)\) \(\chi_{5408}(1939,\cdot)\) \(\chi_{5408}(2347,\cdot)\) \(\chi_{5408}(2723,\cdot)\) \(\chi_{5408}(3131,\cdot)\) \(\chi_{5408}(4643,\cdot)\) \(\chi_{5408}(5051,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{24})\) |
Fixed field: | 24.24.31808511574029960248322509834333516654369310400053248.2 |
Values on generators
\((2367,677,1185)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{7}{12}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 5408 }(3131, a) \) | \(1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{12}\right)\) |
sage: chi.jacobi_sum(n)