Properties

Label 5415.4304
Modulus $5415$
Conductor $285$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5415, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,9,17]))
 
pari: [g,chi] = znchar(Mod(4304,5415))
 

Basic properties

Modulus: \(5415\)
Conductor: \(285\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{285}(29,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5415.bf

\(\chi_{5415}(299,\cdot)\) \(\chi_{5415}(1199,\cdot)\) \(\chi_{5415}(2654,\cdot)\) \(\chi_{5415}(2789,\cdot)\) \(\chi_{5415}(2834,\cdot)\) \(\chi_{5415}(4304,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((3611,2167,5056)\) → \((-1,-1,e\left(\frac{17}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 5415 }(4304, a) \) \(1\)\(1\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{7}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5415 }(4304,a) \;\) at \(\;a = \) e.g. 2