from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(547, base_ring=CyclotomicField(546))
M = H._module
chi = DirichletCharacter(H, M([254]))
pari: [g,chi] = znchar(Mod(119,547))
χ547(4,⋅)
χ547(6,⋅)
χ547(15,⋅)
χ547(16,⋅)
χ547(19,⋅)
χ547(25,⋅)
χ547(34,⋅)
χ547(36,⋅)
χ547(49,⋅)
χ547(51,⋅)
χ547(53,⋅)
χ547(56,⋅)
χ547(60,⋅)
χ547(62,⋅)
χ547(66,⋅)
χ547(67,⋅)
χ547(69,⋅)
χ547(73,⋅)
χ547(74,⋅)
χ547(76,⋅)
χ547(78,⋅)
χ547(82,⋅)
χ547(86,⋅)
χ547(97,⋅)
χ547(99,⋅)
χ547(110,⋅)
χ547(111,⋅)
χ547(113,⋅)
χ547(115,⋅)
χ547(116,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(273127)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ547(119,a) |
1 | 1 | e(273127) | e(74) | e(273254) | e(27374) | e(27310) | e(273250) | e(9136) | e(71) | e(9167) | e(3922) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)