Properties

Label 547.137
Modulus 547547
Conductor 547547
Order 273273
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(547, base_ring=CyclotomicField(546))
 
M = H._module
 
chi = DirichletCharacter(H, M([544]))
 
pari: [g,chi] = znchar(Mod(137,547))
 

Basic properties

Modulus: 547547
Conductor: 547547
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 273273
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 547.o

χ547(4,)\chi_{547}(4,\cdot) χ547(6,)\chi_{547}(6,\cdot) χ547(15,)\chi_{547}(15,\cdot) χ547(16,)\chi_{547}(16,\cdot) χ547(19,)\chi_{547}(19,\cdot) χ547(25,)\chi_{547}(25,\cdot) χ547(34,)\chi_{547}(34,\cdot) χ547(36,)\chi_{547}(36,\cdot) χ547(49,)\chi_{547}(49,\cdot) χ547(51,)\chi_{547}(51,\cdot) χ547(53,)\chi_{547}(53,\cdot) χ547(56,)\chi_{547}(56,\cdot) χ547(60,)\chi_{547}(60,\cdot) χ547(62,)\chi_{547}(62,\cdot) χ547(66,)\chi_{547}(66,\cdot) χ547(67,)\chi_{547}(67,\cdot) χ547(69,)\chi_{547}(69,\cdot) χ547(73,)\chi_{547}(73,\cdot) χ547(74,)\chi_{547}(74,\cdot) χ547(76,)\chi_{547}(76,\cdot) χ547(78,)\chi_{547}(78,\cdot) χ547(82,)\chi_{547}(82,\cdot) χ547(86,)\chi_{547}(86,\cdot) χ547(97,)\chi_{547}(97,\cdot) χ547(99,)\chi_{547}(99,\cdot) χ547(110,)\chi_{547}(110,\cdot) χ547(111,)\chi_{547}(111,\cdot) χ547(113,)\chi_{547}(113,\cdot) χ547(115,)\chi_{547}(115,\cdot) χ547(116,)\chi_{547}(116,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ273)\Q(\zeta_{273})
Fixed field: Number field defined by a degree 273 polynomial (not computed)

Values on generators

22e(272273)e\left(\frac{272}{273}\right)

First values

aa 1-111223344556677889910101111
χ547(137,a) \chi_{ 547 }(137, a) 1111e(272273)e\left(\frac{272}{273}\right)e(37)e\left(\frac{3}{7}\right)e(271273)e\left(\frac{271}{273}\right)e(94273)e\left(\frac{94}{273}\right)e(116273)e\left(\frac{116}{273}\right)e(170273)e\left(\frac{170}{273}\right)e(9091)e\left(\frac{90}{91}\right)e(67)e\left(\frac{6}{7}\right)e(3191)e\left(\frac{31}{91}\right)e(2939)e\left(\frac{29}{39}\right)
sage: chi.jacobi_sum(n)
 
χ547(137,a)   \chi_{ 547 }(137,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ547(137,))   \tau_{ a }( \chi_{ 547 }(137,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ547(137,),χ547(n,))   J(\chi_{ 547 }(137,·),\chi_{ 547 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ547(137,))  K(a,b,\chi_{ 547 }(137,·)) \; at   a,b=\; a,b = e.g. 1,2