sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5488, base_ring=CyclotomicField(294))
M = H._module
chi = DirichletCharacter(H, M([0,147,58]))
pari:[g,chi] = znchar(Mod(25,5488))
χ5488(9,⋅)
χ5488(25,⋅)
χ5488(121,⋅)
χ5488(137,⋅)
χ5488(233,⋅)
χ5488(249,⋅)
χ5488(345,⋅)
χ5488(457,⋅)
χ5488(473,⋅)
χ5488(585,⋅)
χ5488(681,⋅)
χ5488(697,⋅)
χ5488(793,⋅)
χ5488(809,⋅)
χ5488(905,⋅)
χ5488(921,⋅)
χ5488(1017,⋅)
χ5488(1033,⋅)
χ5488(1129,⋅)
χ5488(1241,⋅)
χ5488(1257,⋅)
χ5488(1369,⋅)
χ5488(1465,⋅)
χ5488(1481,⋅)
χ5488(1577,⋅)
χ5488(1593,⋅)
χ5488(1689,⋅)
χ5488(1705,⋅)
χ5488(1801,⋅)
χ5488(1817,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(687,4117,689) → (1,−1,e(14729))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 19 | 23 | 25 |
χ5488(25,a) |
1 | 1 | e(294205) | e(29465) | e(14758) | e(294157) | e(9871) | e(4945) | e(147137) | e(65) | e(14752) | e(14765) |
sage:chi.jacobi_sum(n)