Properties

Label 5488.25
Modulus 54885488
Conductor 27442744
Order 294294
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5488, base_ring=CyclotomicField(294)) M = H._module chi = DirichletCharacter(H, M([0,147,58]))
 
Copy content pari:[g,chi] = znchar(Mod(25,5488))
 

Basic properties

Modulus: 54885488
Conductor: 27442744
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 294294
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2744(1397,)\chi_{2744}(1397,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5488.co

χ5488(9,)\chi_{5488}(9,\cdot) χ5488(25,)\chi_{5488}(25,\cdot) χ5488(121,)\chi_{5488}(121,\cdot) χ5488(137,)\chi_{5488}(137,\cdot) χ5488(233,)\chi_{5488}(233,\cdot) χ5488(249,)\chi_{5488}(249,\cdot) χ5488(345,)\chi_{5488}(345,\cdot) χ5488(457,)\chi_{5488}(457,\cdot) χ5488(473,)\chi_{5488}(473,\cdot) χ5488(585,)\chi_{5488}(585,\cdot) χ5488(681,)\chi_{5488}(681,\cdot) χ5488(697,)\chi_{5488}(697,\cdot) χ5488(793,)\chi_{5488}(793,\cdot) χ5488(809,)\chi_{5488}(809,\cdot) χ5488(905,)\chi_{5488}(905,\cdot) χ5488(921,)\chi_{5488}(921,\cdot) χ5488(1017,)\chi_{5488}(1017,\cdot) χ5488(1033,)\chi_{5488}(1033,\cdot) χ5488(1129,)\chi_{5488}(1129,\cdot) χ5488(1241,)\chi_{5488}(1241,\cdot) χ5488(1257,)\chi_{5488}(1257,\cdot) χ5488(1369,)\chi_{5488}(1369,\cdot) χ5488(1465,)\chi_{5488}(1465,\cdot) χ5488(1481,)\chi_{5488}(1481,\cdot) χ5488(1577,)\chi_{5488}(1577,\cdot) χ5488(1593,)\chi_{5488}(1593,\cdot) χ5488(1689,)\chi_{5488}(1689,\cdot) χ5488(1705,)\chi_{5488}(1705,\cdot) χ5488(1801,)\chi_{5488}(1801,\cdot) χ5488(1817,)\chi_{5488}(1817,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ147)\Q(\zeta_{147})
Fixed field: Number field defined by a degree 294 polynomial (not computed)

Values on generators

(687,4117,689)(687,4117,689)(1,1,e(29147))(1,-1,e\left(\frac{29}{147}\right))

First values

aa 1-1113355991111131315151717191923232525
χ5488(25,a) \chi_{ 5488 }(25, a) 1111e(205294)e\left(\frac{205}{294}\right)e(65294)e\left(\frac{65}{294}\right)e(58147)e\left(\frac{58}{147}\right)e(157294)e\left(\frac{157}{294}\right)e(7198)e\left(\frac{71}{98}\right)e(4549)e\left(\frac{45}{49}\right)e(137147)e\left(\frac{137}{147}\right)e(56)e\left(\frac{5}{6}\right)e(52147)e\left(\frac{52}{147}\right)e(65147)e\left(\frac{65}{147}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ5488(25,a)   \chi_{ 5488 }(25,a) \; at   a=\;a = e.g. 2