from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5520, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([22,33,0,0,42]))
chi.galois_orbit()
[g,chi] = znchar(Mod(451,5520))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(5520\) | |
Conductor: | \(368\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(44\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 368.x | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{44})\) |
Fixed field: | 44.44.4141890260646712580912980965306954513336276372715662057543551492310346739946349214617837764608.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{5520}(451,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{35}{44}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{44}\right)\) |
\(\chi_{5520}(571,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{1}{44}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{25}{44}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{7}{44}\right)\) |
\(\chi_{5520}(931,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{41}{44}\right)\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{13}{44}\right)\) |
\(\chi_{5520}(1171,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{25}{44}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{7}{44}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{9}{44}\right)\) |
\(\chi_{5520}(1891,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{29}{44}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{21}{44}\right)\) |
\(\chi_{5520}(2011,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{29}{44}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{5}{44}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{19}{44}\right)\) |
\(\chi_{5520}(2131,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{7}{44}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{5}{44}\right)\) |
\(\chi_{5520}(2251,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{35}{44}\right)\) | \(e\left(\frac{41}{44}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{29}{44}\right)\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{1}{44}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{39}{44}\right)\) |
\(\chi_{5520}(2491,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{17}{44}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{3}{44}\right)\) |
\(\chi_{5520}(2731,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{1}{44}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{41}{44}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{15}{44}\right)\) |
\(\chi_{5520}(3211,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{5}{44}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{25}{44}\right)\) | \(e\left(\frac{41}{44}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{23}{44}\right)\) |
\(\chi_{5520}(3331,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{17}{44}\right)\) | \(e\left(\frac{35}{44}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{29}{44}\right)\) |
\(\chi_{5520}(3691,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{17}{44}\right)\) | \(e\left(\frac{5}{44}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{35}{44}\right)\) |
\(\chi_{5520}(3931,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{1}{44}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{5}{44}\right)\) | \(e\left(\frac{17}{44}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{29}{44}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{31}{44}\right)\) |
\(\chi_{5520}(4651,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{7}{44}\right)\) | \(e\left(\frac{17}{44}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{41}{44}\right)\) | \(e\left(\frac{25}{44}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{43}{44}\right)\) |
\(\chi_{5520}(4771,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{7}{44}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{35}{44}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{41}{44}\right)\) |
\(\chi_{5520}(4891,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{25}{44}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{29}{44}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{27}{44}\right)\) |
\(\chi_{5520}(5011,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{7}{44}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{17}{44}\right)\) |
\(\chi_{5520}(5251,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{1}{44}\right)\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{35}{44}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{25}{44}\right)\) |
\(\chi_{5520}(5491,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{5}{44}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{37}{44}\right)\) |