Properties

Label 560.13
Modulus 560560
Conductor 560560
Order 44
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,3,2]))
 
pari: [g,chi] = znchar(Mod(13,560))
 

Basic properties

Modulus: 560560
Conductor: 560560
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 560.bn

χ560(13,)\chi_{560}(13,\cdot) χ560(517,)\chi_{560}(517,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.4.12544000.1

Values on generators

(351,421,337,241)(351,421,337,241)(1,i,i,1)(1,-i,-i,-1)

First values

aa 1-111339911111313171719192323272729293131
χ560(13,a) \chi_{ 560 }(13, a) 11111111i-i11iiiii-i11i-i1-1
sage: chi.jacobi_sum(n)
 
χ560(13,a)   \chi_{ 560 }(13,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ560(13,))   \tau_{ a }( \chi_{ 560 }(13,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ560(13,),χ560(n,))   J(\chi_{ 560 }(13,·),\chi_{ 560 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ560(13,))  K(a,b,\chi_{ 560 }(13,·)) \; at   a,b=\; a,b = e.g. 1,2