Properties

Label 560.43
Modulus 560560
Conductor 8080
Order 44
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,1,3,0]))
 
pari: [g,chi] = znchar(Mod(43,560))
 

Basic properties

Modulus: 560560
Conductor: 8080
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ80(43,)\chi_{80}(43,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 560.t

χ560(43,)\chi_{560}(43,\cdot) χ560(547,)\chi_{560}(547,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.4.256000.2

Values on generators

(351,421,337,241)(351,421,337,241)(1,i,i,1)(-1,i,-i,1)

First values

aa 1-111339911111313171719192323272729293131
χ560(43,a) \chi_{ 560 }(43, a) 11111-111i-i11i-ii-iii1-1ii1-1
sage: chi.jacobi_sum(n)
 
χ560(43,a)   \chi_{ 560 }(43,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ560(43,))   \tau_{ a }( \chi_{ 560 }(43,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ560(43,),χ560(n,))   J(\chi_{ 560 }(43,·),\chi_{ 560 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ560(43,))  K(a,b,\chi_{ 560 }(43,·)) \; at   a,b=\; a,b = e.g. 1,2