Properties

Label 560.559
Modulus 560560
Conductor 140140
Order 22
Real yes
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0,1,1]))
 
pari: [g,chi] = znchar(Mod(559,560))
 

Basic properties

Modulus: 560560
Conductor: 140140
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ140(139,)\chi_{140}(139,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 560.e

χ560(559,)\chi_{560}(559,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(35)\Q(\sqrt{35})

Values on generators

(351,421,337,241)(351,421,337,241)(1,1,1,1)(-1,1,-1,-1)

First values

aa 1-111339911111313171719192323272729293131
χ560(559,a) \chi_{ 560 }(559, a) 11111-1111-1111111111-11111
sage: chi.jacobi_sum(n)
 
χ560(559,a)   \chi_{ 560 }(559,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ560(559,))   \tau_{ a }( \chi_{ 560 }(559,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ560(559,),χ560(n,))   J(\chi_{ 560 }(559,·),\chi_{ 560 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ560(559,))  K(a,b,\chi_{ 560 }(559,·)) \; at   a,b=\; a,b = e.g. 1,2