Properties

Label 560.ci
Modulus 560560
Conductor 3535
Order 1212
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,3,2]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(17,560))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 560560
Conductor: 3535
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 35.k
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: Q(ζ35)+\Q(\zeta_{35})^+

Characters in Galois orbit

Character 1-1 11 33 99 1111 1313 1717 1919 2323 2727 2929 3131
χ560(17,)\chi_{560}(17,\cdot) 11 11 e(1112)e\left(\frac{11}{12}\right) e(56)e\left(\frac{5}{6}\right) e(23)e\left(\frac{2}{3}\right) ii e(512)e\left(\frac{5}{12}\right) e(13)e\left(\frac{1}{3}\right) e(112)e\left(\frac{1}{12}\right) i-i 1-1 e(16)e\left(\frac{1}{6}\right)
χ560(33,)\chi_{560}(33,\cdot) 11 11 e(112)e\left(\frac{1}{12}\right) e(16)e\left(\frac{1}{6}\right) e(13)e\left(\frac{1}{3}\right) i-i e(712)e\left(\frac{7}{12}\right) e(23)e\left(\frac{2}{3}\right) e(1112)e\left(\frac{11}{12}\right) ii 1-1 e(56)e\left(\frac{5}{6}\right)
χ560(257,)\chi_{560}(257,\cdot) 11 11 e(712)e\left(\frac{7}{12}\right) e(16)e\left(\frac{1}{6}\right) e(13)e\left(\frac{1}{3}\right) ii e(112)e\left(\frac{1}{12}\right) e(23)e\left(\frac{2}{3}\right) e(512)e\left(\frac{5}{12}\right) i-i 1-1 e(56)e\left(\frac{5}{6}\right)
χ560(353,)\chi_{560}(353,\cdot) 11 11 e(512)e\left(\frac{5}{12}\right) e(56)e\left(\frac{5}{6}\right) e(23)e\left(\frac{2}{3}\right) i-i e(1112)e\left(\frac{11}{12}\right) e(13)e\left(\frac{1}{3}\right) e(712)e\left(\frac{7}{12}\right) ii 1-1 e(16)e\left(\frac{1}{6}\right)