from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(567, base_ring=CyclotomicField(54))
M = H._module
chi = DirichletCharacter(H, M([17,36]))
pari: [g,chi] = znchar(Mod(95,567))
Basic properties
Modulus: | \(567\) | |
Conductor: | \(567\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(54\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 567.bq
\(\chi_{567}(2,\cdot)\) \(\chi_{567}(32,\cdot)\) \(\chi_{567}(65,\cdot)\) \(\chi_{567}(95,\cdot)\) \(\chi_{567}(128,\cdot)\) \(\chi_{567}(158,\cdot)\) \(\chi_{567}(191,\cdot)\) \(\chi_{567}(221,\cdot)\) \(\chi_{567}(254,\cdot)\) \(\chi_{567}(284,\cdot)\) \(\chi_{567}(317,\cdot)\) \(\chi_{567}(347,\cdot)\) \(\chi_{567}(380,\cdot)\) \(\chi_{567}(410,\cdot)\) \(\chi_{567}(443,\cdot)\) \(\chi_{567}(473,\cdot)\) \(\chi_{567}(506,\cdot)\) \(\chi_{567}(536,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{27})\) |
Fixed field: | Number field defined by a degree 54 polynomial |
Values on generators
\((407,325)\) → \((e\left(\frac{17}{54}\right),e\left(\frac{2}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 567 }(95, a) \) | \(-1\) | \(1\) | \(e\left(\frac{35}{54}\right)\) | \(e\left(\frac{8}{27}\right)\) | \(e\left(\frac{31}{54}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{41}{54}\right)\) | \(e\left(\frac{14}{27}\right)\) | \(e\left(\frac{16}{27}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)