Properties

Label 5733.1060
Modulus $5733$
Conductor $819$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,2,11]))
 
pari: [g,chi] = znchar(Mod(1060,5733))
 

Basic properties

Modulus: \(5733\)
Conductor: \(819\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{819}(241,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5733.ft

\(\chi_{5733}(1060,\cdot)\) \(\chi_{5733}(1501,\cdot)\) \(\chi_{5733}(3694,\cdot)\) \(\chi_{5733}(5458,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.21792013086393181607025441573.2

Values on generators

\((2549,1522,5293)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{1}{6}\right),e\left(\frac{11}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 5733 }(1060, a) \) \(1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{12}\right)\)\(-i\)\(e\left(\frac{1}{3}\right)\)\(-i\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{5}{12}\right)\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5733 }(1060,a) \;\) at \(\;a = \) e.g. 2